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Community Structure

Many networks contain community structures.

Communities are characterized by

I many internal edges

I few external edges

(generalization of cliques)

Applications in sociology, computer science, physics, biology, . . . [For10]
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Zachary’s Karate Club Network

John A.
Mr. Hi

|V | = 34,
|E| = 156

Communities in Zachary’s karate club network [Zac77].

Colors denote membership a�er the fission of the club.
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Anti-community Structure

Anti-Communities are characterized by

I few internal edges

I many external edges

(generalization of multipartite graphs)
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Zachary’s Karate Club Network

Mr. Hi

John A.

|V | = 34,
|E| = 156

Anti-communities in Zachary’s karate club network [Zac77].

Colors denote membership a�er the fission of the club.
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Challenges and Objectives

I Definition

How to define anti-communities?

I Models and Algorithms

Which algorithms can be used?

I Exploratory Analysis

Are anti-communities also present in other networks?
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Definition



Graph Complement

Original network

with 3 anti-communities

Graph complement

with 3 communities
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Graph Complement

Original network

with 3 anti-communities

Graph complement

with 3 communities
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Definition

Definition
Vertices C ⊆ V of graph G = (V,E) form an anti-community i� C forms a

community in the graph complement Ĝ = (V, Ê) with Ê := (V × V ) \ E.

Conclusions:

I Not really unique (many definitions for communities)

I Many existing algorithms and methods can be reused
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Models and Algorithms



Proposed Methods

Existing methods either slow or poor quality.

Greedy algorithms

I using Modularity measure [NG04]

I using Anti-Modularity measure [CYC14]

Vertex similarity

I Adjacency mapping

I Distance mapping

Optimization problem

Clustering problem
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Modularity Measure

Intuition: Number of internal edges in G = (V,E) minus number of edges in a

random graph with same degree-distribution.

Modularity of a graph

M := 1
2m

∑
ij

[
aij −

didj

2m

]
δ(gi, gj)

m: Total number of edges

A = [aij]: Adjacency matrix of G
d = [di]: Vertex degrees

δ(gi, gj): 1 i� vi and vj are both in same group
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Greedy Algorithms

Make locally optimal choice at each step.

1. Initialization

Assign each vertex to a separate group

2. Merge

Merge two groups, s.t. the Modularity is minimized

(or the Anti-Modularity is maximized)

3. Repeat

If more than one group is le�, go to step 2.

Otherwise, return groups with best (Anti-)Modularity.
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Vertex Similarity

Based on the concept of structural equivalence.

1. Mapping
Map vertices to feature vector representation

I Adjacency mapping: M(vi) := [aij ]j
I Distance mapping: M(vi) := [d(vi, v1), . . . , d(vi, vn)]

2. Clustering

Compute clustering of feature vectors (k-Means, . . . )
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Runtime Evaluation

Label propagation

Greedy Modularity

Greedy Anti-modularity

Vertex sim. Adjacency

Vertex sim. Distance

Graph Complement + Mod.

Stochastic Block Model

Nested Stochastic Block M.

Evaluation with Erdős-Rényi random graphs (sparse) 12



Exploratory Analysis



Spectral Line Networks

Goal: Encode energy states of a physical system (and their relation) in a network.

+Ze

n=1

n=2

n=3

ΔE

ΔE=hf

E2

E1
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Example: Spectral Line Network of Helium

Spectral line network network of Helium
[KRRN15] with |V | = 183, |E| = 2282.

Colors show the anti-communities

obtained with a vertex similarity method.

Circles show the ground-truth partition

I orbital angular momentum (`),

I total angular momentum (j), and

I spin (s)

Parahelium

S = 0
Orthohelium

S = 1

` = 0

` = 1

` = 2

` = 3

` = 4

` = 5

` = 6

` = 7
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Example: Adjectives and Nouns Network

adjective
noun|V | = 112,

|E| = 425

Adjectives and Nouns network [New06]. Circles correspond to the

anti-communities found by the greedy modularity minimization algorithm. 15



Example: Adjectives and Nouns Network

perfect

adjective
noun[...] and made himself 

a  perfect master  of 
his profession [...]

master

Adjectives and Nouns network [New06]. Circles correspond to the

anti-communities found by the greedy modularity minimization algorithm. 15



Example: Adjectives and Nouns Network

round
morning

light

low

money
possible

perfect

anything

arm

eye

mother

half

short

beautiful

bright

great

fancy

strong

pleasant

adjective
noun

Adjectives and Nouns network [New06]. Circles correspond to the

anti-communities found by the greedy modularity minimization algorithm. 15



Summary



Summary

I Anti-community structures are present in many networks, including

I networks of spectral line transitions

I Zachary’s karate club network

I . . . and many more

I Many concepts of traditional community detection can be reused by

computing the graph complement

I Specialized algorithms and measures are required if performance is important
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Further Reading

I Evaluation measures:

Adaption of the adjusted Rand index and normalized mutual information

measures for anti-communities.

I Random graphs:

Algorithms to generate Erdős-Rényi and Barabási-Albert random graph

model for graphs with (anti-)community structure.

I Performance evaluation:

�ality comparison for graphs with known community structure.
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Resources

Implementations and datasets available at:

http://dbs.ifi.uni-heidelberg.de/
resources/anticommunity

Thank you!
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Baseline Methods

I Graph complement + X

Allows to reuse existing methods, but high memory usage / slow.

I Label propagation algorithm for anti-communities [CYC14]

Fast, but poor quality

I Generic methods

e.g., Stochastic block models [Pei14; Pei17]



Complexity of Greedy Algorithms

I Community detection:

Naive method O(n3)
Skip unconnected edges O(n(n+m))
Use max-heap data structure O(n log2 n)1

I Anti-community detection:

Graph complement O(n3)
Our method O(n(n+m))

Result can also be used to improve community detection!

1
for graphs with strong hierarchical structure
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Basics of the Bohr Model

Goal: Encode energy states of a physical system (and their relation) in a network.

+Ze

n=1

n=2

n=3

ΔE

ΔE=hf

positively charged nucleus

circular trajectories

electron



Basics of the Bohr Model

Goal: Encode energy states of a physical system (and their relation) in a network.

+Ze

n=1

n=2

n=3

ΔE

ΔE=hf

I Energy states

defined by possible orbits of electrons

I State transitions

requires / releases energy ∆E
→ emission or absorption line

Simplified model!
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Spectral Line Networks

Source Absorption
cell

Entrance
slit

Exit
slit

Dispersing
element

Detector Display

Overview of an absorption experiment. Visualization

based on Modern Spectroscopy by Hollas [Hol04].

Spectral lines I State transitions I Energy states I Network
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Performance evaluation
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Evaluation with Erdős-Rényi random graphs (k = 5)
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