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Community Structure

Many networks contain community structures.

Communities are characterized by

» many internal edges
> few external edges

(generalization of cliques)

Applications in sociology, computer science, physics, biology, ... [For10]



Zachary’s Karate Club Network

V] = 34,
|E| = 156

Communities in Zachary’s karate club network [Zac77].

Colors denote membership after the fission of the club.



Anti-community Structure

Anti-Communities are characterized by

» few internal edges
» many external edges

(generalization of multipartite graphs)




Zachary’s Karate Club Network

V| = 34,
|E| = 156

Anti-communities in Zachary’s karate club network [Zac77].

Colors denote membership after the fission of the club.



Challenges and Objectives

» Definition

How to define anti-communities?

» Models and Algorithms

Which algorithms can be used?

» Exploratory Analysis

Are anti-communities also present in other networks?



Definition




Graph Complement
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Definition

Definition
Vertices C' C V of graph G = (V, E) form an anti-community iff C forms a
community in the graph complement G = (V, E) with E := (V x V) \ E.



Definition

Definition
Vertices C' C V of graph G = (V, E) form an anti-community iff C forms a
community in the graph complement G = (V, E) with E := (V x V) \ E.

Conclusions:

» Not really unique (many definitions for communities)

» Many existing algorithms and methods can be reused



Models and Algorithms




Proposed Methods

Existing methods either slow or poor quality.

Greedy algorithms

» using Modularity measure [NG04]

» using Anti-Modularity measure [CYC14]

Vertex similarity
» Adjacency mapping

» Distance mapping



Proposed Methods

Existing methods either slow or poor quality.

Greedy algorithms

» using Modularity measure [NG04] > Optimization problem

» using Anti-Modularity measure [CYC14] )

Vertex similarity

» Adjacency mapping > Clustering problem

» Distance mapping J



Modularity Measure

Intuition: Number of internal edges in G = (V, EY) minus number of edges in a

random graph with same degree-distribution.

Modularity of a graph
1 d;d;
M.=— i — —=| 8(gi, g5
WD ~ [GZJ 2m] (gza g])
m: Total number of edges
A = [a;;]: Adjacency matrix of G
d = [d;]: Vertex degrees

(9, 95): 1 iff v; and v; are both in same group



Greedy Algorithms

Make locally optimal choice at each step.

1. Initialization

Assign each vertex to a separate group
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Greedy Algorithms

Make locally optimal choice at each step.

1. Initialization

Assign each vertex to a separate group

2. Merge

Merge two groups, s.t. the Modularity is minimized
(or the Anti-Modularity is maximized)
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Greedy Algorithms

Make locally optimal choice at each step.

1. Initialization

Assign each vertex to a separate group

2. Merge

Merge two groups, s.t. the Modularity is minimized
(or the Anti-Modularity is maximized)

3. Repeat

If more than one group is left, go to step 2.

Otherwise, return groups with best (Anti-)Modularity.
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Vertex Similarity

Based on the concept of structural equivalence.

1. Mapping
Map vertices to feature vector representation
» Adjacency mapping: M (v;) == [asj];
> Distance mapping: M (v;) := [d(vi,v1), ..., d(vi,vp)]



Vertex Similarity

Based on the concept of structural equivalence.

1. Mapping
Map vertices to feature vector representation
» Adjacency mapping: M (v;) == [asj];
> Distance mapping: M (v;) := [d(vi,v1), ..., d(vi,vp)]

2. Clustering

Compute clustering of feature vectors (k-Means, . . .)



Runtime Evaluation
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Evaluation with Erdés-Rényi random graphs (sparse)
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Exploratory Analysis




Spectral Line Networks

Goal: Encode energy states of a physical system (and their relation) in a network.
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Spectral Line Networks

Goal: Encode energy states of a physical system (and their relation) in a network.
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Example: Spectral Line Network of Helium

Spectral line network network of Helium
[KRRN15] with |V| = 183, |F| = 2282.

Colors show the anti-communities

obtained with a vertex similarity method.

Circles show the ground-truth partition
» orbital angular momentum (¢),
» total angular momentum (), and

» spin (s)
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Example: Spectral Line Network of Helium
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Example: Adjectives and Nouns Network

@ adjective
V] =112, oo
|E| = 425

Adjectives and Nouns network [New06]. Circles correspond to the

anti-communities found by the greedy modularity minimization algorithm.
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Example: Adjectives and Nouns Network

[...1 and made himself

a master] of

his profession [...]

@ adjective
O noun

Adjectives and Nouns network [New06]. Circles correspond to the

anti-communities found by the greedy modularity minimization algorithm.

15



Example: Adjectives and Nouns Network

@ adjective
................. possible O noun

- morning
........ e rOUnd

beautiful

bright
short arm

great

anything

strong eye

mother

Adjectives and Nouns network [New06]. Circles correspond to the

anti-communities found by the greedy modularity minimization algorithm.

15



Summary




Summary

» Anti-community structures are present in many networks, including
» networks of spectral line transitions
» Zachary’s karate club network

» ... and many more

» Many concepts of traditional community detection can be reused by

computing the graph complement

» Specialized algorithms and measures are required if performance is important
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Further Reading

» Evaluation measures:

Adaption of the adjusted Rand index and normalized mutual information

measures for anti-communities.

» Random graphs:

Algorithms to generate Erdés-Rényi and Barabasi-Albert random graph
model for graphs with (anti-)community structure.

» Performance evaluation:

Quality comparison for graphs with known community structure.



Resources

Implementations and datasets available at:

http://dbs.ifi.uni-heidelberg.de/
resources/anticommunity

Thank you!
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Baseline Methods

» Graph complement + X

Allows to reuse existing methods, but high memory usage / slow.

» Label propagation algorithm for anti-communities [CYC14]
Fast, but poor quality

» Generic methods

e.g., Stochastic block models [Pei14; Pei17]



Complexity of Greedy Algorithms

» Community detection:

Naive method O(n?)
Skip unconnected edges O(n(n+m))
Use max-heap data structure O(nlog*n)’

'for graphs with strong hierarchical structure
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Complexity of Greedy Algorithms

» Community detection:

Naive method O(n?)
Skip unconnected edges O(n(n+m))
Use max-heap data structure O(nlog®n)"

» Anti-community detection:

Graph complement O(n?)
Our method O(n(n+m))

Result can also be used to improve community detection!

for graphs with strong hierarchical structure



Basics of the Bohr Model

Goal: Encode energy states of a physical system (and their relation) in a network.

electron

positively charged nucleus

= Circular trajectories




Basics of the Bohr Model

Goal: Encode energy states of a physical system (and their relation) in a network.

> Energy states

defined by possible orbits of electrons

> State transitions

requires / releases energy AE

—» emission or absorption line




Basics of the Bohr Model

Goal: Encode energy states of a physical system (and their relation) in a network.
> Energy states
defined by possible orbits of electrons

> State transitions

requires / releases energy AE

—» emission or absorption line

/N Simplified model!




Spectral Line Networks
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Overview of an absorption experiment. Visualization

based on Modern Spectroscopy by Hollas [Hol04].



Spectral Line Networks
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Overview of an absorption experiment. Visualization

based on Modern Spectroscopy by Hollas [Hol04].

Spectral lines » State transitions » Energy states » Network



Performance evaluation

!

GCM

ARI

AP = Pext — Pint
Evaluation with Erdés-Rényi random graphs (k = 5)
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