

Efficient Anti-community Detection in Complex Networks

Sebastian Lackner¹, Andreas Spitz¹, Matthias Weidemüller², and Michael Gertz¹ 30th International Conference on Scientific and Statistical Database Management (SSDBM) July 9 - 11, 2018, Bolzano-Bozen, Italy

 $^{^1} Database \ Systems \ Research \ Group, \ Heidelberg \ University, \ Germany \\ \{lackner, spitz, gertz\}@informatik.uni-heidelberg.de$

 $^{^2\}mathrm{Quantum}$ Dynamics of Atomic and Molecular Systems Group, Heidelberg University, Germany weidemueller@uni-heidelberg.de

Community Structure

Many networks contain community structures.

Communities are characterized by

- many internal edges
- few external edges(generalization of cliques)

Applications in sociology, computer science, physics, biology, . . . [For10]

Zachary's Karate Club Network

Communities in *Zachary's karate club* network [Zac77]. Colors denote membership after the fission of the club.

Anti-community Structure

Anti-Communities are characterized by

- few internal edges
- many external edges(generalization of multipartite graphs)

Zachary's Karate Club Network

Anti-communities in *Zachary's karate club* network [Zac77]. Colors denote membership after the fission of the club.

Challenges and Objectives

▶ Definition

How to define anti-communities?

► Models and Algorithms

Which algorithms can be used?

Exploratory Analysis

Are anti-communities also present in other networks?

Definition

Graph Complement

Original network with 3 anti-communities

Graph Complement

Original network with 3 anti-communities

Graph complement with 3 communities

Definition

Definition

Vertices $C \subseteq V$ of graph G = (V, E) form an anti-community iff C forms a community in the graph complement $\hat{G} = (V, \hat{E})$ with $\hat{E} := (V \times V) \setminus E$.

7

Definition

Definition

Vertices $C \subseteq V$ of graph G = (V, E) form an anti-community iff C forms a community in the graph complement $\hat{G} = (V, \hat{E})$ with $\hat{E} := (V \times V) \setminus E$.

Conclusions:

- ► Not really unique (many definitions for communities)
- Many existing algorithms and methods can be reused

Models and Algorithms

Proposed Methods

Existing methods either slow or poor quality.

Greedy algorithms

- ▶ using *Modularity* measure [NG04]
- using Anti-Modularity measure [CYC14]

Vertex similarity

- Adjacency mapping
- Distance mapping

Proposed Methods

Existing methods either slow or poor quality.

Greedy algorithms

- ▶ using *Modularity* measure [NG04]
- ▶ using *Anti-Modularity* measure [CYC14]

Optimization problem

Vertex similarity

- Adjacency mapping
- Distance mapping

Clustering problem

Modularity Measure

Intuition: Number of internal edges in $\mathcal{G} = (V, E)$ minus number of edges in a random graph with same degree-distribution.

Modularity of a graph

$$M := \frac{1}{2m} \sum_{ij} \left[a_{ij} - \frac{d_i d_j}{2m} \right] \delta(g_i, g_j)$$

m: Total number of edges

 $\mathbf{A} = [a_{ij}]$: Adjacency matrix of \mathcal{G}

 $d = [d_i]$: Vertex degrees

 $\delta(g_i, g_j)$: 1 iff v_i and v_j are both in same group

Greedy Algorithms

Make locally optimal choice at each step.

1. Initialization

Assign each vertex to a separate group

Greedy Algorithms

Make locally optimal choice at each step.

1. Initialization

Assign each vertex to a separate group

2. Merge

Merge two groups, s.t. the *Modularity* is minimized (or the *Anti-Modularity* is maximized)

Greedy Algorithms

Make locally optimal choice at each step.

1. Initialization

Assign each vertex to a separate group

2. Merge

Merge two groups, s.t. the *Modularity* is minimized (or the *Anti-Modularity* is maximized)

3. **Repeat**

If more than one group is left, go to step 2. Otherwise, return groups with best (Anti-)Modularity.

Vertex Similarity

Based on the concept of structural equivalence.

1. Mapping

Map vertices to feature vector representation

- ▶ Adjacency mapping: $M(v_i) := [a_{ij}]_j$
- **Distance mapping:** $M(v_i) := [d(v_i, v_1), \dots, d(v_i, v_n)]$

Vertex Similarity

Based on the concept of structural equivalence.

1. Mapping

Map vertices to feature vector representation

- ▶ Adjacency mapping: $M(v_i) := [a_{ij}]_j$
- $lackbox{ } lackbox{ Distance mapping: } M(v_i) := [d(v_i,v_1),\ldots,d(v_i,v_n)]$

2. Clustering

Compute clustering of feature vectors (*k-Means*, . . .)

Runtime Evaluation

Evaluation with Erdős-Rényi random graphs (sparse)

Exploratory Analysis

Spectral Line Networks

Goal: Encode energy states of a physical system (and their relation) in a network.

Spectral Line Networks

Goal: Encode energy states of a physical system (and their relation) in a network.

Example: Spectral Line Network of Helium

Spectral line network network of Helium [KRRN15] with |V| = 183, |E| = 2282.

Colors show the anti-communities obtained with a vertex similarity method.

Circles show the ground-truth partition

- orbital angular momentum (ℓ),
- \blacktriangleright total angular momentum (j), and
- ightharpoonup spin (s)

Example: Spectral Line Network of Helium

Example: Adjectives and Nouns Network

Adjectives and Nouns network [New06]. Circles correspond to the anti-communities found by the greedy modularity minimization algorithm.

Example: Adjectives and Nouns Network

Adjectives and Nouns network [New06]. Circles correspond to the anti-communities found by the greedy modularity minimization algorithm.

Example: Adjectives and Nouns Network

Adjectives and Nouns network [New06]. Circles correspond to the anti-communities found by the greedy modularity minimization algorithm.

Summary

Summary

- Anti-community structures are present in many networks, including
 - networks of spectral line transitions
 - Zachary's karate club network
 - ... and many more
- Many concepts of traditional community detection can be reused by computing the graph complement
- Specialized algorithms and measures are required if performance is important

Further Reading

Evaluation measures:

Adaption of the adjusted Rand index and normalized mutual information measures for anti-communities.

► Random graphs:

Algorithms to generate Erdős-Rényi and Barabási-Albert random graph model for graphs with (anti-)community structure.

▶ Performance evaluation:

Quality comparison for graphs with known community structure.

Resources

Implementations and datasets available at:

http://dbs.ifi.uni-heidelberg.de/
 resources/anticommunity

Thank you!

Bibliography

Bibliography i

- [CYC14] L. Chen, Q. Yu, and B. Chen. "Anti-modularity and anti-community detecting in complex networks". In: *Inf. Sci.* 275 (2014), pp. 293–313.
- [For10] S. Fortunato. "Community detection in graphs". In: *Phys. Rep.* 486.3 (2010), pp. 75–174.
- [Hol04] J. M. Hollas. *Modern spectroscopy*. John Wiley & Sons, 2004.
- [KRRN15] A. Kramida, Y. Ralchenko, J. Reader, and NIST ASD Team. NIST Atomic Spectra Database (ver. 5.3), [Online]. Available: http://physics.nist.gov/asd [2017, July 4]. National Institute of Standards and Technology, Gaithersburg, MD. 2015.

Bibliography ii

- [New06] M. E. J. Newman. "Finding community structure in networks using the eigenvectors of matrices". In: *Phys. Rev. E* 74.3 (2006).
- [NG04] M. E. J. Newman and M. Girvan. "Finding and evaluating community structure in networks". In: *Phys. Rev. E* 69.2 (2004).
- [Pei14] T. P. Peixoto. "Hierarchical block structures and high-resolution model selection in large networks". In: *Phys. Rev. X* 4 (1 2014).
- [Pei17] T. P. Peixoto. "Bayesian stochastic blockmodeling". In: (2017). URL: https://arxiv.org/abs/1705.10225.
- [Zac77] W. W. Zachary. "An information flow model for conflict and fission in small groups". In: *J. Anthropol. Res.* 33.4 (1977), pp. 452–473.

Backup Slides

Baseline Methods

► Graph complement + X

Allows to reuse existing methods, but high memory usage / slow.

- ► Label propagation algorithm for anti-communities [CYC14] Fast, but poor quality
- **▶** Generic methods

e.g., Stochastic block models [Pei14; Pei17]

Complexity of Greedy Algorithms

Community detection:

Naive method

Skip unconnected edges

Use max-heap data structure

 $\mathcal{O}(n^3)$

 $\mathcal{O}(n(n+m))$

 $\mathcal{O}(n\log^2 n)^1$

¹for graphs with strong hierarchical structure

Complexity of Greedy Algorithms

▶ Community detection:

- Naive method $\mathcal{O}(n^3)$ Skip unconnected edges $\mathcal{O}(n(n+m))$
- Use max-heap data structure $\mathcal{O}(n \log^2 n)^1$

► Anti-community detection:

Graph complement $\mathcal{O}(n^3)$ Our method $\mathcal{O}(n(n+m))$

¹for graphs with strong hierarchical structure

Complexity of Greedy Algorithms

▶ Community detection:

Naive method $\mathcal{O}(n^3)$

Skip unconnected edges $\mathcal{O}(n(n+m))$

Use max-heap data structure $\mathcal{O}(n\log^2 n)^1$

► Anti-community detection:

Graph complement $\mathcal{O}(n^3)$

Our method $\mathcal{O}(n(n+m))$

Result can also be used to improve community detection!

¹for graphs with strong hierarchical structure

Basics of the Bohr Model

Goal: Encode energy states of a physical system (and their relation) in a network.

Basics of the Bohr Model

Goal: Encode energy states of a physical system (and their relation) in a network.

- Energy statesdefined by possible orbits of electrons
- ► State transitions requires / releases energy ΔE \rightarrow emission or absorption line

Basics of the Bohr Model

Goal: Encode energy states of a physical system (and their relation) in a network.

- Energy statesdefined by possible orbits of electrons
- ► State transitions requires / releases energy ΔE \rightarrow emission or absorption line

⚠ Simplified model!

Spectral Line Networks

Overview of an absorption experiment. Visualization based on *Modern Spectroscopy* by Hollas [Hol04].

Spectral Line Networks

Overview of an absorption experiment. Visualization based on *Modern Spectroscopy* by Hollas [Hol04].

Spectral lines ► State transitions ► Energy states ► Network

Performance evaluation

Evaluation with Erdős-Rényi random graphs (k=5)